\(\int \frac {\sqrt {a^2+2 a b x^3+b^2 x^6}}{x^2} \, dx\) [13]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 26, antiderivative size = 77 \[ \int \frac {\sqrt {a^2+2 a b x^3+b^2 x^6}}{x^2} \, dx=-\frac {a \sqrt {a^2+2 a b x^3+b^2 x^6}}{x \left (a+b x^3\right )}+\frac {b x^2 \sqrt {a^2+2 a b x^3+b^2 x^6}}{2 \left (a+b x^3\right )} \]

[Out]

-a*((b*x^3+a)^2)^(1/2)/x/(b*x^3+a)+1/2*b*x^2*((b*x^3+a)^2)^(1/2)/(b*x^3+a)

Rubi [A] (verified)

Time = 0.02 (sec) , antiderivative size = 77, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {1369, 14} \[ \int \frac {\sqrt {a^2+2 a b x^3+b^2 x^6}}{x^2} \, dx=\frac {b x^2 \sqrt {a^2+2 a b x^3+b^2 x^6}}{2 \left (a+b x^3\right )}-\frac {a \sqrt {a^2+2 a b x^3+b^2 x^6}}{x \left (a+b x^3\right )} \]

[In]

Int[Sqrt[a^2 + 2*a*b*x^3 + b^2*x^6]/x^2,x]

[Out]

-((a*Sqrt[a^2 + 2*a*b*x^3 + b^2*x^6])/(x*(a + b*x^3))) + (b*x^2*Sqrt[a^2 + 2*a*b*x^3 + b^2*x^6])/(2*(a + b*x^3
))

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 1369

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.))^(p_), x_Symbol] :> Dist[(a + b*x^n + c*x^
(2*n))^FracPart[p]/(c^IntPart[p]*(b/2 + c*x^n)^(2*FracPart[p])), Int[(d*x)^m*(b/2 + c*x^n)^(2*p), x], x] /; Fr
eeQ[{a, b, c, d, m, n, p}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p - 1/2]

Rubi steps \begin{align*} \text {integral}& = \frac {\sqrt {a^2+2 a b x^3+b^2 x^6} \int \frac {a b+b^2 x^3}{x^2} \, dx}{a b+b^2 x^3} \\ & = \frac {\sqrt {a^2+2 a b x^3+b^2 x^6} \int \left (\frac {a b}{x^2}+b^2 x\right ) \, dx}{a b+b^2 x^3} \\ & = -\frac {a \sqrt {a^2+2 a b x^3+b^2 x^6}}{x \left (a+b x^3\right )}+\frac {b x^2 \sqrt {a^2+2 a b x^3+b^2 x^6}}{2 \left (a+b x^3\right )} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.01 (sec) , antiderivative size = 38, normalized size of antiderivative = 0.49 \[ \int \frac {\sqrt {a^2+2 a b x^3+b^2 x^6}}{x^2} \, dx=\frac {\left (-2 a+b x^3\right ) \sqrt {\left (a+b x^3\right )^2}}{2 x \left (a+b x^3\right )} \]

[In]

Integrate[Sqrt[a^2 + 2*a*b*x^3 + b^2*x^6]/x^2,x]

[Out]

((-2*a + b*x^3)*Sqrt[(a + b*x^3)^2])/(2*x*(a + b*x^3))

Maple [A] (verified)

Time = 2.39 (sec) , antiderivative size = 36, normalized size of antiderivative = 0.47

method result size
gosper \(-\frac {\left (-b \,x^{3}+2 a \right ) \sqrt {\left (b \,x^{3}+a \right )^{2}}}{2 x \left (b \,x^{3}+a \right )}\) \(36\)
default \(-\frac {\left (-b \,x^{3}+2 a \right ) \sqrt {\left (b \,x^{3}+a \right )^{2}}}{2 x \left (b \,x^{3}+a \right )}\) \(36\)
risch \(-\frac {a \sqrt {\left (b \,x^{3}+a \right )^{2}}}{x \left (b \,x^{3}+a \right )}+\frac {b \,x^{2} \sqrt {\left (b \,x^{3}+a \right )^{2}}}{2 b \,x^{3}+2 a}\) \(54\)

[In]

int(((b*x^3+a)^2)^(1/2)/x^2,x,method=_RETURNVERBOSE)

[Out]

-1/2*(-b*x^3+2*a)*((b*x^3+a)^2)^(1/2)/x/(b*x^3+a)

Fricas [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 14, normalized size of antiderivative = 0.18 \[ \int \frac {\sqrt {a^2+2 a b x^3+b^2 x^6}}{x^2} \, dx=\frac {b x^{3} - 2 \, a}{2 \, x} \]

[In]

integrate(((b*x^3+a)^2)^(1/2)/x^2,x, algorithm="fricas")

[Out]

1/2*(b*x^3 - 2*a)/x

Sympy [F]

\[ \int \frac {\sqrt {a^2+2 a b x^3+b^2 x^6}}{x^2} \, dx=\int \frac {\sqrt {\left (a + b x^{3}\right )^{2}}}{x^{2}}\, dx \]

[In]

integrate(((b*x**3+a)**2)**(1/2)/x**2,x)

[Out]

Integral(sqrt((a + b*x**3)**2)/x**2, x)

Maxima [A] (verification not implemented)

none

Time = 0.21 (sec) , antiderivative size = 14, normalized size of antiderivative = 0.18 \[ \int \frac {\sqrt {a^2+2 a b x^3+b^2 x^6}}{x^2} \, dx=\frac {b x^{3} - 2 \, a}{2 \, x} \]

[In]

integrate(((b*x^3+a)^2)^(1/2)/x^2,x, algorithm="maxima")

[Out]

1/2*(b*x^3 - 2*a)/x

Giac [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 29, normalized size of antiderivative = 0.38 \[ \int \frac {\sqrt {a^2+2 a b x^3+b^2 x^6}}{x^2} \, dx=\frac {1}{2} \, b x^{2} \mathrm {sgn}\left (b x^{3} + a\right ) - \frac {a \mathrm {sgn}\left (b x^{3} + a\right )}{x} \]

[In]

integrate(((b*x^3+a)^2)^(1/2)/x^2,x, algorithm="giac")

[Out]

1/2*b*x^2*sgn(b*x^3 + a) - a*sgn(b*x^3 + a)/x

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a^2+2 a b x^3+b^2 x^6}}{x^2} \, dx=\int \frac {\sqrt {{\left (b\,x^3+a\right )}^2}}{x^2} \,d x \]

[In]

int(((a + b*x^3)^2)^(1/2)/x^2,x)

[Out]

int(((a + b*x^3)^2)^(1/2)/x^2, x)